# Progression

Are you preparing for campus placements,Banking,SSC, IAS, Insurance,Defence and other competitive exams? Then, make sure to take some time in practicing the Progression questions and answer in Quantitative Aptitude. Moreover, only those questions are included that are relevant and likely to be asked in any competitive exam. So, take these questions and answer, brush up your skills and practice to stay fully prepared for any your exam.

• Q8.Find the 5th term of GP, if it is given that are in GP.

Show Solution Report Error
Please wait...
• Q9.If $\sum _{\text{p}=1}^{\text{n}}{\text{t}}_{\text{p}}=\frac{\text{n}\left(\text{n}+1\right)\left(\text{n}+2\right)\left(\text{n}+3\right)}{8}$, where ${t}_{p}$ denotes the pth term of a series, then $\underset{\text{n}\to \infty }{\mathrm{lim}}\sum _{\text{p}=1}^{\text{n}}\frac{1}{{\text{t}}_{\text{p}}}$ is

Show Solution Report Error
Please wait...
• Q10.If then the minimum value of $\frac{1}{{\text{t}}_{1}}+\frac{1}{{\text{t}}_{2}}+\frac{1}{{\text{t}}_{3}}+\dots +\frac{1}{{\text{t}}_{50}}$is equal to

Show Solution Report Error
Please wait...
• Q11.If $1+\text{k}+{\text{k}}^{2}+\dots +{\text{k}}^{\text{p}}=\left(1+\text{k}\right)\left(1+{\text{k}}^{2}\right)\left(1+{\text{k}}^{4}\right)\left(1+{\text{k}}^{8}\right)\left(1+{\text{k}}^{16}\right),$then the value p is

Show Solution Report Error
Please wait...
• Q12.The sum of k terms of the series $\frac{1}{1·2·3·4}+\frac{1}{2·3·4·5}+\frac{1}{3·4·5·6}+\dots$ is

Show Solution Report Error
Please wait...
• Q13.The sum of infinite terms of the series $\frac{9}{{5}^{2}.2.1}+\frac{13}{{5}^{3}.3.2}+\frac{17}{{5}^{4}.4.3}+\dots$ is:

Show Solution Report Error
Please wait...
• Q14.If it is given that $\frac{1}{1+\sqrt{\text{x}}},\frac{1}{1-\text{x}},\frac{1}{1-\sqrt{\text{x}}}$ are in AP then value of x will be

Show Solution Report Error
Please wait...