Trigonometry

Are you preparing for campus placements,Banking,SSC, IAS, Insurance,Defence and other competitive exams? Then, make sure to take some time in practicing the Trigonometry questions and answer in Quantitative Aptitude. Moreover, only those questions are included that are relevant and likely to be asked in any competitive exam. So, take these questions and answer, brush up your skills and practice to stay fully prepared for any your exam.

  • Q1.The minimum value of 25 tan 2 θ+16 cot 2 θ is: MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIYaGaaGynaiGacshacaGGHbGaaiOBa8aadaahaaWcbeqaa8qa caaIYaaaaOGaeqiUdeNaey4kaSIaaGymaiaaiAdaciGGJbGaai4Bai aacshapaWaaWbaaSqabeaapeGaaGOmaaaakiabeI7aXjaabccacaWG PbGaam4CaiaacQdaaaa@486B@

    Show Solution Report Error
    Please wait...
  • Q2. cos +sin =  2 cos, thencos sin= ?

    Show Solution Report Error
    Please wait...
  • Q3.If cotx.cot2x=1, then find the value of. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaciGGJbGaai4BaiaacshacaWG4bGaaiOlaiGacogacaGGVbGaaiiD aiaaikdacaWG4bGaeyypa0JaaGymaiaacYcacaqGGaGaamiDaiaadI gacaWGLbGaamOBaiaabccacaWGMbGaamyAaiaad6gacaWGKbGaaeii aiaadshacaWGObGaamyzaiaabccacaWG2bGaamyyaiaadYgacaWG1b GaamyzaiaabccacaWGVbGaamOzaiaac6caaaa@5656@

    Show Solution Report Error
    Please wait...
  • Q4.If X+Y+Z=π, then tan X+tan Y+tan Z equals to MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGybGaey4kaSIaamywaiabgUcaRiaadQfacqGH9aqpcqaHapaC caGGSaGaaeiiaiaadshacaWGObGaamyzaiaad6gacaqGGaGaamiDai aadggacaWGUbGaaeiiaiaadIfacqGHRaWkcaWG0bGaamyyaiaad6ga caqGGaGaamywaiabgUcaRiaadshacaWGHbGaamOBaiaabccacaWGAb GaaiiOaiaadwgacaWGXbGaamyDaiaadggacaWGSbGaam4Caiaabcca caWG0bGaam4Baaaa@5B0B@

    Show Solution Report Error
    Please wait...
  • Q5.The value of 1+cosx 1cosx  is: MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaGcaaWdaeaapeWaaSaaa8aabaWdbiaaigdacqGHRaWkcaWGJbGa am4BaiaadohacaWG4baapaqaa8qacaaIXaGaeyOeI0Iaam4yaiaad+ gacaWGZbGaamiEaaaaaSqabaGccaGGGcGaamyAaiaadohacaGG6aaa aa@4558@

    Show Solution Report Error
    Please wait...
  • Q6.The Product of sin1°.Sin2°. Sin3° ...................... Sin180° MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaciGGZbGaaiyAaiaac6gacaaIXaGaaeiSaiaab6cacaqGtbGaaeyA aiaab6gacaaIYaGaaeiSaiaab6cacaqGGaGaae4uaiaabMgacaqGUb GaaG4maiaabclacaqGGaGaaeOlaiaab6cacaqGUaGaaeOlaiaab6ca caqGUaGaaeOlaiaab6cacaqGUaGaaeOlaiaab6cacaqGUaGaaeOlai aab6cacaqGUaGaaeOlaiaab6cacaqGUaGaaeOlaiaab6cacaqGUaGa aeOlaiaabccacaqGtbGaaeyAaiaab6gacaaIXaGaaGioaiaaicdaca qGWcaaaa@5CC0@

    Show Solution Report Error
    Please wait...
  • Q7.A person of height 10m wants to get a fruit which is on a pole of height ( 50 3 )m. If he stands at a distance of( 20 3 )m from the foot of the pole, then the angle at which he should throw the stone, so that it hits the fruit is: MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada WcaaqaaiaaiwdacaaIWaaabaGaaG4maaaaaiaawIcacaGLPaaaqaaa aaaaaaWdbiaad2gacaGGUaGaaeiiaiaadMeacaWGMbGaaeiiaiaadI gacaWGLbGaaeiiaiaadohacaWG0bGaamyyaiaad6gacaWGKbGaam4C aiaabccacaWGHbGaamiDaiaabccacaWGHbGaaeiiaiaadsgacaWGPb Gaam4CaiaadshacaWGHbGaamOBaiaadogacaWGLbGaaeiiaiaad+ga caWGMbWdamaabmaabaWaaSaaaeaacaaIYaGaaGimaaqaamaakaaaba GaaG4maaWcbeaaaaaakiaawIcacaGLPaaapeGaamyBaiaabccacaWG MbGaamOCaiaad+gacaWGTbGaaeiiaiaadshacaWGObGaamyzaiaabc cacaWGMbGaam4Baiaad+gacaWG0bGaaeiiaiaad+gacaWGMbGaaeii aiaadshacaWGObGaamyzaiaabccacaWGWbGaam4BaiaadYgacaWGLb GaaiilaiaabccacaWG0bGaamiAaiaadwgacaWGUbGaaeiiaiaadsha caWGObGaamyzaiaabccacaWGHbGaamOBaiaadEgacaWGSbGaamyzai aabccacaWGHbGaamiDaiaabccacaWG3bGaamiAaiaadMgacaWGJbGa amiAaiaabccacaWGObGaamyzaiaabccacaWGZbGaamiAaiaad+gaca WG1bGaamiBaiaadsgacaqGGaGaamiDaiaadIgacaWGYbGaam4Baiaa dEhacaqGGaGaamiDaiaadIgacaWGLbGaaeiiaiaadohacaWG0bGaam 4Baiaad6gacaWGLbGaaiilaiaabccacaWGZbGaam4BaiaabccacaWG 0bGaamiAaiaadggacaWG0bGaaeiiaiaadMgacaWG0bGaaeiiaiaadI gacaWGPbGaamiDaiaadohacaqGGaGaamiDaiaadIgacaWGLbGaaeii aiaadAgacaWGYbGaamyDaiaadMgacaWG0bGaaeiiaiaadMgacaWGZb GaaiOoaaaa@B86A@

    Show Solution Report Error
    Please wait...
  • Q8. Ifsinφ+cosφ=a and secφ+cosecφ=b,then b( a 2 1 )=? MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGjbGaamOza8aaciGGZbGaaiyAaiaac6gaiiGacqWFgpGAcqGH RaWkciGGJbGaai4BaiaacohacqWFgpGAcqGH9aqpcaWGHbGaaeiiai aabggacaqGUbGaaeizaiaabccaciGGZbGaaiyzaiaacogacqWFgpGA cqGHRaWkciGGJbGaai4BaiaacohacaWGLbGaam4yaiab=z8aQjabg2 da9iaadkgacaGGSaGaamiDaiaadIgacaWGLbGaamOBaiaabccacaWG IbWaaeWaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaG ymaaGaayjkaiaawMcaaiabg2da9iaac+daaaa@6252@

    Show Solution Report Error
    Please wait...
  • Q9. cose c 2 θ+ sin 2 θ2=? MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamyzaiaadogadaahaaWcbeqaaiaaikdaaaGccqaH4oqC cqGHRaWkciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccq aH4oqCcqGHsislcaaIYaGaeyypa0Jaai4paaaa@4719@

    Show Solution Report Error
    Please wait...
  • Q10.Evaluate
    ( sinπ+cosecπ ) 2 + ( cosπ+secπ ) 2 7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaci GGZbGaaiyAaiaac6gacqaHapaCcqGHRaWkciGGJbGaai4Baiaacoha caWGLbGaam4yaiabec8aWbGaayjkaiaawMcaamaaCaaaleqabaGaaG OmaaaakiabgUcaRmaabmaabaGaci4yaiaac+gacaGGZbGaeqiWdaNa ey4kaSIaci4CaiaacwgacaGGJbGaeqiWdahacaGLOaGaayzkaaWaaW baaSqabeaacaaIYaaaaOGaeyOeI0IaaG4naaaa@534F@

    Show Solution Report Error
    Please wait...